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ABSTRACT

A tetrahydrobis(benzofuran) mescaline analogue has been prepared in six steps and 38% overall yield from (4′-O-methyl)methyl gallate. The
key step in this synthesis is a tandem cyclization reaction via directed C−H activation followed by olefin insertion.

Since its discovery in 1896,1 mescaline (1, Figure 1) has
served as a prototypical compound for structure-activity
relationship studies linking molecular structure to hal-
lucinogenic activity.2 Mescaline exerts its behavioral effects
primarily through interaction with the 5-hydroxytryptamine2

(5-HT2) receptors.3 The 5-HT2 family of receptors mediates
a number of physiological processes including vascular and
nonvascular smooth muscle contraction, platelet aggregation,
and modulation of perception, mood, anxiety, and feeding
behavior.4 Furthermore, these receptors are a therapeutic
target for the treatment of central nervous system disorders
such as schizophrenia and depression.5

The synthesis and biological activities of mescaline
analogues2 and 3 (Figure 1), in which one or two of the

aromatic methoxy groups of mescaline are tethered into
rotationally constrained dihydrobenzofuran rings, has recently
been described.6 Compounds2 and 3 exhibit increased
affinities relative to mescaline for cloned human 5-HT2A,
5-HT2B, and 5-HT2C receptors as determined through com-
petitive binding studies with radiolabeled agonist and
antagonist ligands.7

Our interest in compound3 was generated by the ability
to rapidly assemble the tetrahydrobis(benzofuran) functional-
ity utilizing catalytic C-H activation. To date, only a few
examples of C-H activation in the synthesis of natural
products or biologically active molecules have been re-
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Figure 1. Mescaline (1) and dihydrobenzofuran and tetrahydrobis-
(benzofuran) analogues2 and3.
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ported.8,9 Recently, we have described the annulation of
aromatic imines, in which an alkene is tetheredmetato the
imine. Rhodium-catalyzed, imine-directedortho C-H acti-
vation followed by olefin insertion provides access to func-
tionalized indanes, tetralanes, dihydroindoles, and dihydro-
benzofurans.10 Herein we report the application of our annula-
tion strategy to the concise synthesis of the conformationally
restricted tetrahydrobis(benzofuran) mescaline analogue3.

Our approach to3 was based on the elaboration of inter-
mediate8 (Scheme 1), obtained from the rhodium-catalyzed

tandem cyclization reaction of aromatic imine7. Precursor
7 was prepared from (4′-O-methyl)methyl gallate4.

The synthesis began with the conversion of bis-phenol411

to the bis-vinyl ether. The synthesis of phenyl vinyl ethers
is generally accomplished by alkylation of phenol with 1,2-
dibromoethane followed by elimination with KOtBu, or by
subjection of phenol to high pressure of acetylene in the
presence of a strong base. These procedures require forcing
conditions, and the products are generally obtained in only
low to modest yields.

Our initial efforts to form the bis-vinyl ether instead
focused on a recently reported procedure for the iridium-
catalyzed reaction of alcohols with vinyl pivalate.12 Unfor-
tunately, subjection of4 to the reported reaction conditions
resulted in low yields of the desired bis-vinyl ether (Scheme
2, eq 1). Modification of reaction parameters, including

reaction time and temperature, concentration, catalyst load-
ing, and stoichiometry of vinyl acetate, did not improve the
yield. Most conditions resulted in poor conversion, and under
forcing conditions a significant amount of acetylated rather
than vinylated material was observed.

We then investigated an alternative procedure recently
described by Blouin and Frenette.13 Treatment of bis-phenol
4 with tetravinyl tin and copper(II) acetate in the presence
of oxygen led to the desired bis-vinyl ether5 in reproducibly
high yield (Scheme 2, eq 2).

With the bis-vinyl ether5 in hand, conversion of the
methyl ester to the aldehyde was examined. Preliminary
reactions with DIBAl-H were unsuccessful, resulting in over-
reduction of the ester to the benzylic alcohol. However,
treatment of the ester with a pyrrolidine-modified aluminum
hydride reagent according to the procedure of Abe and co-
workers14 provided the desired benzaldehyde in high yield
(Scheme 3). The aldehyde was then converted to the benzyl

imine 7 by treatment with benzylamine in the presence of
molecular sieves.
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To effect the tandem cyclization reaction, we first exam-
ined conditions that we had previously used for the annu-
lation of alkene-substituted aromatic imines. Unfortunately,
Wilkinson’s catalyst provided only low yields of the desired
tetrahydrobis(benzofuran) product after extended heating, as
determined by1H NMR experiments (Table 1, entry 1).

Consequently, a number of phosphines were screened in
the presence of [RhCl(coe)2]2 in an effort to improve the
reaction efficiency (Table 1).15 Higher yields were obtained
with the use of more electron-rich phosphines, with the
exception of the bulky P(t-Bu)3 ligand (entries 2-7). In the
cases of the electron-rich phosphines, the optimal ratio of
ligand to rhodium(I) for generating the bis-cyclization
product was 1:1 (entry 6 versus entry 7). We were pleased
to find that employing catalytic [RhCl(coe)2]2 with the
electron-rich dicyclohexyl ferrocenyl phosphine ligand led
to the desired bis-cyclization product in good yield (entry
6).16

Having identified an efficient catalyst system for the
annulation reaction, the tetrahydrobis(benzofuran)8 was
isolated in 65% yield after acidic workup (Scheme 4).17

Aldehyde 8 was then converted to the target mescaline
analogue3 via a Henry reaction followed by reduction of
the intermediate nitroalkene.

In summary, tetrahydrobis(benzofuran) mescaline analogue
3 has been prepared in six steps and 38% overall yield from
(4′-O-methyl)methyl gallate4. The key step in this synthesis
is a rhodium-catalyzed tandem C-H activation/C-C bond
forming reaction. The bis-vinylation of4 is also noteworthy.
Importantly, this efficient annulation sequence can potentially
be applied to the synthesis of other biologically relevant
dihydrobenzofurans.
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Table 1. Optimization of the Tandem C-H Activation/Olefin
Insertion Reaction

entry Rh catalysta time (h)
NMR

yield (%)b

1 (PPh3)3RhClc 20 10
2 P(t-Bu)3, [RhCl(coe)2]2 3 0
3 P(n-Pr)3, [RhCl(coe)2]2 17 18
4 PCy3, [RhCl(coe)2]2 8 48
5 FcPPh2, [RhCl(coe)2]2 4 34
6 FcPCy2,[RhCl(coe)2]2 2 75
7 FcPCy2, [RhCl(coe)2]2

d 5 52

a Reactions were performed with 20 mol % of Rh(I) and 20 mol % of
phosphine.b Yields were determined by1H NMR relative to an internal
standard.c 20 mol % of Wilkinson’s catalyst was used.d Reaction was
performed with 20 mol % of Rh(I) and 40 mol % of phosphine.
Abbreviations: coe) cyclooctene; Fc) ferrocenyl.
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